Polar optical phonons in wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures
نویسندگان
چکیده
Polar optical-phonon modes are derived analytically for spheroidal quantum dots with wurtzite crystal structure. The developed theory is applied to freestanding spheroidal ZnO quantum dots and to spheroidal ZnO quantum dots embedded into a MgZnO crystal. The wurtzite (anisotropic) quantum dots are shown to have strongly different polar optical-phonon modes in comparison with zincblende (isotropic) quantum dots. The obtained results allow one to explain and accurately predict phonon peaks in the Raman spectra of wurtzite nanocrystals, nanorods (prolate spheroids), and epitaxial quantum dots (oblate spheroids). (Some figures in this article are in colour only in the electronic version)
منابع مشابه
ZnO Quantum Dots: Physical Properties and Optoelectronic Applications
We present a review of the recent theoretical and experimental investigation of excitonic and phonon states in ZnO quantum dots. A small dielectric constant in ZnO leads to very large exciton binding energies, while wurtzite crystal structure results in unique ph non spectra different from those in cubic crystals. The exciton nergies and radiative lifetimes are determined in the intermediate qu...
متن کاملInterface and confined polar optical phonons in spherical ZnO quantum dots with wurtzite crystal structure
We derive analytically the interface and confined polar optical-phonon modes for spherical quantum dots with wurtzite crystal structure. While the frequency of confined optical phonons in zincblende nanocrystals is equal to that of the bulk crystal phonons, the confined polar optical phonons in wurtzite nanocrystals are shown to have a discrete spectrum of frequencies different from those in bu...
متن کاملInterface and confined optical phonons in wurtzite nanocrystals
We derive within the dielectric-continuum model an integral equation that defines interface and confined polar optical-phonon modes in nanocrystals with a wurtzite crystal structure. It is demonstrated theoretically that, while the frequency of confined polar optical phonons in zinc-blende nanocrystals is equal to that of the bulk crystal phonons, the confined polar optical phonons in wurtzite ...
متن کاملInterpretation of the Phonon Frequency Shifts in ZnO Quantum Dots
Nanostructures made of zinc oxide (ZnO), a wide-bandgap semiconductor, have recently attracted attention due to their proposed applications in low-voltage and shortwavelength (368 nm) electro-optical devices, transparent ultraviolet (UV) protection films, gas sensors, and varistors. Raman spectroscopy presents a powerful tool for identifying specific materials in complex structures and for extr...
متن کاملSynthesis and Characterization of Graphene-ZnO Nanocomposite and its Application in Photovoltaic Cells
In this paper, we present a simple method for preparation of graphene-ZnO nanocomposites (G-ZnO). The method is based on thermal treatment of the graphene oxide (GO)/ZnO paste which reduces the graphene oxide into the graphene and leads to the formation of the G-ZnO nanocomposite. The structure, morphology and optical properties of synthesized nanocomposites are characterized with XRD, FESEM, F...
متن کامل